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Introduction 

 An undirected graph G is called an Interval Graph if its vertices can 
be put into one-to-one correspondence with a set of intervalsℐof linearly 

ordered sets such that two vertices are connected by an edge of G if and 
only if their corresponding intervals have nonempty intersection. We call 
 ℐan interval representation for G. It is not important whether we use open 

intervals or closed intervals, the resulting class of graphs will be the same. 
Figure 1 shows an interval graph - the windmill graph and an interval 
representation for it. 
Triangulated graph property 

 Every simple cycle of length strictly greater than 3 possesses a 
chord. Graphs which satisfy this property are called triangulated graph. The 
graph in Figure1is triangulated, but the house graph in Figure 2 is not 
triangulated because it contains a chordless 4-cycle. 

 
Figure 1                                                    Figure 2  
Some characterization of interval graphs 

 The following theorem and its corollary will establish where the class 
of interval graphs belongs in the world of perfect graphs. 
Theorem 1.(Gilmore  Hoffman ).[3],[4] 
 Let G be an undirected graph. The following statements are 
equivalent. 
(i)    G is an interval graph 

(ii) G contains no chordless 4-cycle and its complement 𝐺 is 
comparability graph. 

(iii)  The maximal cliques of G can be linearly ordered such that, for every 
vertex x of G, the maximal cliques containing x occur consecutively. 

Proof  (i)  ⟹ (ii)  

 Suppose the interval graph G contains a chordless cycle 
[v0,v1,v2,….vℓ-1,v0] with ℓ> 3. Let Ik denote the interval 

corresponding to vk for i = 1,2,…. ℓ - 1, choose a point P1 𝜖 Ii-1∩ Ii . 

Since Ii-1 and Ii+1do not overlap, the P1 constitute a strictly 
increasing or strictly decreasing sequence. Therefore, it is impossible 
for ℓ0 andℓ-1to intersect. This is contradicting the criterion that 
v0vℓ − 1  is an edge of G. So G contains no chordless 4 –cycle
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Now we show that the complement of G satisfies the 

transitive orientation property. Let {𝐼𝑣}𝑣 𝜖 𝑣be an 
interval representation of  G =(V,E). Define an 

orientation F of the complements for 𝐺 = (V,𝐸 ) as (xy) 

𝜖 F ⟺  Ix<Iy(∀xy∊𝐸 ). Here Ix<Iymeans that the interval 

Ixlies entirely on the left of the interval Iy . When 
Ix<Iy<Iz implies that Ix<Iz. This show that (x,z) 𝜖 F. That 

is (xy) 𝜖 F, (y,z) 𝜖 F ⟹(x,z) 𝜖 F. Thus, F is a transitive 

orientation of 𝐺 . Therefore𝐺  is a comparability graph. 
(ii)  ⟹ (iii) 

Let us assume that G = (V,E) contains no chordless 4 
– cycle, and let F be a transitive orientation of the 

complement 𝐺 . 
Lemma A : 

Let A1 and A2bemaximal cliques of G  
(a) There exist an edge in F with one endpoint in A1 

and the other endpoint in A2 . 

(b) All such edges of 𝐸  connecting A1 with A2 have 

the same orientation in F. 

Proof of Lemma A 

(a)  If no such edge exists in F, then A1∪ A2 is a 

clique of G, contradicting maximality.Suppose 
(ab) 𝜖 F and (dc) 𝜖 F with a, c 𝜖 A1 and b, d 𝜖 A2. 

We must show a contradiction. If either a = c or 
b = d, then transitivity of F immediately gives a 
contradiction; otherwise, these four vertices are 

distinct and (ad) or (bc) is in 𝐸 , since E may not 

have a chordless 4 – cycle. Without lose of 

generality, we assume that (ad) 𝜖 𝐸. We want to 

find which way it is oriented. Using the 
transitivity of F, ad 𝜖F(respectively (da) 𝜖 F) 

would imply ac 𝜖 F (respectively (db) 𝜖 F). Which 

is impossible, and lemma is proved.  
(b)  Consider the following relation on the collection 

𝒞 of maximal cliques: A1< A2iff there is an edge 

of F connecting A1 with A2 which is oriented 
towards A2. By lemma A, this defines a 
tournament on 𝒞. We claim that(𝒞, <) is a 

transitive tournament, and hence linearly order 
𝒞. For suppose A1< A2 and A2< A3. Then there 

would be edges (wx) 𝜖 F and (yz) 𝜖 F with w 𝜖 

A1, x,y𝜖 A2 and z 𝜖 A3. If either (xz) ∉ E or (wy) ∉ 

E, then (wz)𝜖 F and A1< A3. Therefore, assume 

that the edges (wy), (yx) and (xz) are all in E 
.Since G contains no chordless 4 – cycle, wz ∉ 

E, and the transitivity of F implies (wz) ∈ F. Thus 

A1< A3. This proves the transitive tournament 
claim. 

  Assume that 𝒞 has been linearly ordered 

A1,A2,…….Am according to the above relation. 
Suppose there exist cliques Ai<Aj<Ak with x ∈ Ai, x ∉ 
Aj, and x ∈ Ak. Since x ∉ Aj, there is a vertex y ∈ Aj 

such that (xy) ∉ E. But Ai<Ajimplies (xy) ∈ F, where as 

Aj<Ak implies (yx) ∈ F, contradiction. This proves (iii). 

(iii) ⇒ (i) 

 For each vertex  x ∈ V, let I(x) denote the set of 

all maximal caliques of G which contain x. The sets 

I(x), for x ∈ V, are intervals of the linearly ordered set 

(𝒞, <). Now we have to show that (xy) ∈ E ⟺ I(x)∩ 

I(y)≠ ∅ (x,y∈ V).This holds, since two vertices are 

connected if and only if they are both contained in 

some maximal clique. 

Corollary  

An undirected graph G is an interval graph if and only 

if G is a triangulated graph and its complement 𝐺  is a 

comparability graph. 

 Statement (iii) of the above theorem has an 

interesting matrix formulation.  

 Matrix whose entries are zeros and ones,is said 

to have the consecutive1’s  property for columns if 

itsrows can be permuted in such a way that the 1’s  

in each column occur consecutively. In figure 3 the 

matrix M1 has the consecutive l’s property for 

columns since its rows can be permuted to  obtain 

M2. Matrix M3 does not possess this property. 

 

 
 
 
 
 
 

1 0 0 1 1 1
0 1 1 1 1 1
1 1 1 0 0 1
10 1 0 0 1
0 1 0 1 1 1
0 1 1 0 1 0  

 
 
 
 
 

⟶ 

 
 
 
 
 
 

1 0 1 0 0 1
1 0 0 1 1 1 
0 1 0 1 1 1
0 1 1 1 1 1
0 1 1 0 1 0
1 1 1 0 0 1 

 
 
 
 
 

 
 
 
 
 
 

0 1 0 1 0 1
1 1 0 0 1 0
1 1 0 1 1 0
1 1 1 1 1 0
0 0 1 1 1 0
0 0 0 1 1 0  

 
 
 
 
 

 

              M1                                M2                       M3 

Figure 3 

Theorem 2(Fulkerson) [6] 

 An undirected graph G is an interval graph if and 

only if its clique matrix M (maximal cliques – verses – 

vertices incidence matrix) has the consecutive 1’s 

property for columns. 

Proof: 

 An ordering of the maximal cliques of G 

corresponds to a permutation of the rows of M. Then 

the result follows from theorem1. 

Asterodial Triple:[25] Three non-adjacent vertices  are 

called an asterodial triples if they can’t  be ordered in 

such a way  that every path from the first vertex to the  

third vertex passes through the neighbor of the  

second vertex. Figure 4 is an example of Asterodial 

Triples. 

 
Figure 4 

 Another characterization of interval graph is 

given as follows 

Theorem 3:( Lekkerkerker  and Boland .) [7] 

 An undirected graph G is an interval graph if and 

only if the following two conditions are satisfied 

(i)   G is an triangulated graph 

(ii)  Any three vertices of G can be ordered in such a 

way the every path from the first vertex to the 
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third vertex passes through a neighbor of the 

second vertex.Condition (ii) illustrates a well-

known law of the business world. Every 

shipment from a supplier to the consumer must 

pass by the middleman. 

 The Graph  is  an interval graph ifand only if   it 

is a Chordal  Graph containing no asterodial 

triples.[25] 

The complexity of consecutive l’s testing[10], [11]. 

 Interval graphs were characterized as those 

graph whose clique matrices satisfy the consecutive 

l’s property for columns. We may apply this 

characterization to a recognition algorithm for interval 

graphs G = (V,E) in a two step process. First verify 

that G is triangulated and, if so, enumerate its 

maximal cliques. This can be executed in time 

proportional to  𝑉  +  𝐸  and will produce at most n = 

 𝑉  maximal cliques Second, test whether or not the 

clique can be ordered so that those which contain 

vertex v occur consecutively for every v ∈V. That is, to 

list for the consecutive l’s property for columns of the 

clique matrix, M – (0,1) valued with m rows and n 

columns and f zeros can be tested for consecutive l’s 

property in O(m + n +f) steps.[1],[2]. Thus, this step 

can also be executed in linear time.For further study 

of complexity analysis in recognition of interval graphs 

are given in [21], [22]. 

Application of Interval graphs[10], [15]. 

Application 1. 

 Suppose C1,C2,….Cn are chemical compounds 

which must be refrigerated under closely monitored 

conditions. If compound C1 must be kept at a constant 

temperature between ti and t’I degrees, how many 

refrigerators will be needed to store all the 

compounds? 

 Let G be the interval graph with vertices 

C1,C2,….Cn and connect two vertices whenever the 

temperature intervals of their corresponding 

compounds intersect. By the Helly property, If 

{𝐶𝑖1 , 𝐶𝑖2 , … . 𝐶𝑖𝑘 } is a clique of G, then the intervals {[tij, 

t’ij] /j = 1,2….k} will have a common point of 

intersection, say t. A refrigerator set at a temperature 

of t will be suitable for storing all of them. Thus, a 

solution to the minimization problem will be obtained 

by finding a minimum clique cover of G. 

Hellyproperty: A family {Ti} i𝜖 I of subset of a set T is 

said to satisfy the Helly property if J ⊆ I and Ti∩ Tj≠ ∅ 

for all i, j 𝜖 J implies that ∩JTj≠ ∅ . 

Application 2. [4] 

 Let X represent a set of distinct data items 

(records) and let ℐbe a collection of subset of X called 

inquiries. Can X be placed in linear sequential storage 

in such a way that the members of each I 𝜖ℐare stored 

in consecutive locations ?when the storage layout is 

possible, then records pertinent to any inquiry can be 

accessed with two parameters, a starting pointer and 

a length. calls this the consecutive retrievalproperty : it 

is clearly a restatement of the consecutive 

arrangement property. 

Conclusion  

 This  paper studied the Interval graph as a 

special class of intersection graph and perfect graph 

.It gives the property of interval graphs by      Gilmore 

‘s theorem statement and proof.An undirected graph 

is an Interval graph iff its clique matrix has the 

consecutive1’s property for column.The complexity for 

the consecutive 1s testing  can be executed in linear 

time. For an interval graph any  three vertices can be 

ordered insuch a way that every path from the first 

vertex to the third vertex passes through a neighbor of 

the second vertex . Interval graph is a chordal graph 

without any asterodial triples. Interval graphs  can be 

extensively used for  the  study of mutations of DNA in 

molecular biology, scheduling and communication 

network. 
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